Свойства на матриците - въпрос, който много може да предизвика трудности. Ето защо е добре да го разгледаме по-подробно.
Матрицата е правоъгълна маса,включително числа и елементи. Той също така е набор от номера и елементи от друга структура, които са написани като правоъгълна маса, състояща се от определен брой редове и колони. Таблицата трябва да бъде затворена в скоби. Те могат да бъдат закръглени скоби, квадратни скоби или двойни скоби от пряк тип. Всички числа в матрицата се наричат матричен елемент и те също имат координатите си в полето на таблицата. Матрицата задължително се обозначава с главната буква на латинската азбука.
Свойства на матрици или математически таблицивключват няколко аспекта. Добавянето и изваждането на матрици е строго елемент по елемент. Размножаването и разделянето им надхвърля обикновената аритметика. За да умножим една матрица с друга, трябва да помним информация за скаларния продукт на един вектор върху друг.
С = (а, Ь) = а 1 b 1 + a 2 b 2 + ... + a N b N
Свойствата на матричното умножение имат някои нюанси. Продуктът на една матрица от друга не е комутативен, т.е. (a, b) не е равен на (a, b).
Основните свойства на матриците включват такова понятие,като мярка за уместност. Деликатността се счита за мярка за благоприличие за такива таблици. Детерминанта е определена функция на няколко елемента на квадратна матрица, влизаща в ред n. С други думи, детерминанта се нарича детерминанта. В таблица с втора последователност, детерминанта се приравнява към разликата на продуктите с числа или елементи от два диагонала на тази матрица A11A22-A12A21. Детерминанта за матрица с по-висок ред се изразява с детерминантите на нейните блокове.
За да разберем колко е изродила матрицата,Понятие като ранг на матрица се въвежда. Рангът е броят на независимите линейни колони и редове от тази таблица. Матрицата може да бъде обратима само ако нейният ранг е пълен, т.е. рангът (А) е равен на N.
Свойствата на матричните детерминанти включват:
1. За квадратна матрица детерминанта не се променя, когато е транспониран. Тоест детерминанта на тази матрица ще бъде приравнена към детерминанта на тази таблица в трансформираната форма.
2. Ако някоя колона или ред съдържа само една нула, тогава детерминанта на такава матрица ще бъде равен на нула.
3. Ако в матрицата се заменят две колони или два реда, знакът за детерминанта на такава таблица ще промени стойността си на обратното.
4. Ако някоя колона или ред от матрицата се умножи по число, то нейната детерминанта се умножава по същия номер.
5.Ако в матрицата всеки от елементите е написан като сума от два или повече компонента, тогава детерминанта на такава таблица е написан като сума от няколко детерминанта. Всяка детерминанта на такава сума е детерминанта на матрицата, в която вместо елемента, представен от сумата, един от термините на тази сума е написан по реда на детерминанта.
6. Ако във всяка матрица има два реда със същите елементи или две еднакви колони, тогава детерминанта на тази таблица се равнява на нула.
7. Също така детерминантът е равен на нула за матрица, чиито две колони или две линии са пропорционални един на друг.
8.Ако елементите на ред или колона се умножат по число и след това се добавят към тях чрез елементи в друг ред или колона на същата матрица, тогава детерминанта на тази таблица не се променя.
Като цяло, можем да кажем, че имотитематриците представляват набор от сложни, но същевременно необходими знания за естеството на такива математически единици. Всички свойства на матрицата директно зависят от нейните компоненти и елементи.