/ / Бісектриса трикутника і її властивості

Бісектриса трикутника і її властивості

Серед численних предметівзагальноосвітньої школи є такий, як «геометрія». Традиційно вважається, що родоначальниками цієї систематичної науки є греки. На сьогоднішній день грецьку геометрію називають елементарної, так як саме вона почала вивчення найпростіших форм: площин, прямих, правильних багатокутників і трикутників. На останніх ми і зупинимо свою увагу, а точніше на бісектрисі цієї фігури. Для тих, хто вже призабув, бісектриса трикутника є відрізком бісектриси одного з кутів трикутника, який ділить його навпіл і з'єднує вершину з точкою, розміщеною на протилежній стороні.

Бісектриса трикутника має ряд властивостей, які необхідно знати при вирішенні тих чи інших завдань:

  • Бісектриса кута є геометричне місце точок, віддалених на рівних відстанях від прилеглих до кута сторін.
  • Бісектриса в трикутнику ділить протилежнувід кута сторону на відрізки, які пропорційні прилеглим сторонам. Наприклад, дано трикутник MKB, де з кутка K виходить бісектриса, що з'єднує вершину цього кута з точкою A на протилежній стороні MB. Проаналізувавши дане властивість і наш трикутник, маємо MA / AB = MK / KB.
  • Точка, в якій перетинаються бісектриси всіх трьох кутів трикутника, є центром кола, яка вписана в цей же трикутник.
  • Підстава биссектрис одного зовнішнього і двох внутрішніх кутів знаходяться на одній прямій, за умови, що бісектриса зовнішнього кута не є паралельною протилежному боці трикутника.
  • Якщо дві бісектриси одного трикутника рівні, то цей трикутник рівнобедрений.

Необхідно відзначити, що якщо задані три бісектриси, то побудова трикутника за ним, навіть за допомогою циркуля, неможливо.

Дуже часто при вирішенні задач бісектрисатрикутника невідома, а необхідно визначити її довжину. Для вирішення такого завдання необхідно знати кут, який ділиться бісектрисою навпіл, і прилеглі до цього кутку боку. В цьому випадку шукана довжина визначається як відношення подвоєного твори прилеглих до кута сторін і косинуса кута поділеного навпіл до суми прилеглих до кута сторін. Наприклад, дано все той же трикутник MKB. Бісектриса виходить з кута K і перетинає протилежну сторону МВ в точці А. Кут, з якого виходить бісектриса, позначимо y. Тепер запишемо все те, що сказано словами у вигляді формули: KA = (2 * MK * KB * cos y / 2) / (MK + KB).

Якщо величина кута, з якого виходитьбісектриса трикутника, невідома, але відомі всі його сторони, то для обчислення довжини бісектриси ми скористаємося додаткової змінної, яку назвемо напівпериметр і позначимо літерою P: P = 1/2 * (MK + KB + MB). Після цього внесемо деякі зміни в попередню формулу, по якій визначалася довжина бісектриси, а саме, в чисельник дробу ставимо подвоєний корінь квадратний з твору довжин сторін, прилеглих до кута, на напівпериметр і приватне, де з напівпериметр віднімається довжина третьої сторони. Знаменник залишимо без зміни. У вигляді формули це буде виглядати так: KA = 2 * √ (MK * KB * P * (P-MB)) / (MK + KB).

Бісектриса в прямокутному трикутнику маєвсі ті ж властивості, що і в звичайному, Але, крім уже відомих, є і нове: бісектриси гострих кутів прямокутного трикутника при перетині утворюють кут 45 градусів. При необхідності це нескладно довести, використовуючи властивості трикутника і суміжних кутів.

Бісектриса рівнобедреного трикутника разом ззагальними властивостями має і кілька своїх. Згадаймо, що це за трикутник. У такого трикутника дві сторони рівні, і рівні прилеглі до основи кути. Звідси випливає, що бісектриси, які опускаються на бічні сторони рівнобедреного трикутника, рівні між собою. Крім того, бісектриса, опущена на основу, одночасно є і висотою, і медіаною.

сподобалося:
0
Популярні пости
Духовний розвиток
їжа
уп